of known strength of potassium chloride at 25°, have been reported.

2. From these the activity coefficients of alkaline bromides and iodides have been computed at concentrations of from 0.1 to 4 M.

3. Activity coefficients determined by this method are found to be in good agreement with the best electromotive force and freezing point data.

[CONTRIBUTION FROM THE CHEMISTRY DEPARTMENT, AUCKLAND UNIVERSITY COLLEGE]

The Activity Coefficients of Alkali Nitrates, Acetates and p-Toluenesulfonates in Aqueous Solution from Vapor Pressure Measurements

BY ROBERT A. ROBINSON

The isopiestic method of determining the vapor pressure of a solution (and thence the activity coefficient of the solute), previously described¹ with reference to the alkali halides has now been applied to other alkali salts. Measurements have been made on the nitrates of lithium, sodium and potassium which are of interest because of the very low activity coefficient of the latter salt² and on the corresponding p-toluenesulfonates, the potassium salt of which Sinclair³ has found to resemble potassium nitrate in respect of its vapor pressure lowering.

Harned and Robinson⁴ have found that the plots of the activity coefficient of acetic acid in solutions of lithium, sodium and potassium chloride against salt concentration are in the order K>Na>Li, exhibiting a reversal of the order characteristic of hydrochloric acid in these alkali chloride solutions, namely, Li>Na>K. Scatchard and Prentiss⁵ have recently shown by measurements of the freezing point of alkali acetate solutions that the order of the activity coefficient curves is also the reverse of that which obtains for the alkali halides. To confirm this important observation at another temperature a series of measurements have been made on three alkali acetates.

Experimental Results

The experimental procedure as well as the derivation of the activity coefficient have already been described. The three nitrates and lithium and sodium acetates were recrystallized several times. Potassium acetate was made by neutralization of the carbonate with the calculated

- (1) (a) Robinson and Sinclair, THIS JOURNAL, 56, 1830 (1934);
- (b) Robinson, ibid., 57, 1161 (1935). (2) Scatchard, Prentiss and Jones, ibid., 54, 2690 (1932).
 - (3) Sinclair, J. Phys. Chem., 37, 495 (1933).
 - (4) Harned and Robinson, THIS JOURNAL, 50, 3157 (1928).
 - (5) Scatchard and Prentiss, ibid., 56, 807 (1934).

AUCKLAND, NEW ZEALAND **RECEIVED MARCH 21, 1935**

amount of acetic acid and subsequent crystallization. The toluenesulfonates were made by simi-

TABLE I

ISOPIESTIC SOLUTIONS OF POTASSIUM CHLORIDE AND SOME ALKALI SALTS

 m_1 = concentration of potassium chloride. m_2 = concentration of alkali salt in the isopiestic solution.

m_1	773 2	m1	7722	m_1	772 2
		Lithium	Acetate		
0.1263	0.1252	1.232	1.145	2.839	2.499
. 1621	.1598	1.241	1.147	2.896	2.545
. 2118	.2082	1.565	1.431	3.113	2.719
. 3397	. 3319	1.741	1.579	3.253	2.828
. 5922	. 5678	1.793	1.622	3.821	3. 29 4
.7327	.6951	2.015	1.815	4.067	3.501
. 8090	.7665	2.365	2.107	4.480	3.84 0
1.017	. 9490	2.479	2.199	4.516	3.869
1.103	1.028	2.527	2.239	4.810	4.091
		2.565	2.272		
		Sodium	Acetate		
0.1263	0.1238	1.461	1.279	2.691	2.247
.1621	.1586	1.594	1.390	2.735	2.281
.2118	.2050	1.741	1.510	2.866	2.373
. 3397	. 3266	1.793	1.548	2.896	2.397
. 5922	.5516	1.819	1.570	2.998	2.474
.7327	.6733	2.015	1.721	3.113	2.559
. 8 090	.7408	2.287	1.930	3.375	2.754
1.017	.91 64	2.365	2.003	3.583	2.909
1.103	.9873	2.409	2.030	4.480	3.572
1.232	1,100	2.479	2.088	4.516	3.593
1.241	1.102	2.565	2.150	4.810	3.813
1.453	1.278	2.671	2.231		
		Potassium	Acetate		
0.1263	0.1230	1.017	0.9012	2.244	1.855
. 1621	.1575	1.103	.9766	2.365	1.947
.1872	. 1821	1.232	1.085	2.479	2.035
.2118	.2037	1.241	1.088	2.896	2.336
.3397	.3233	1.435	1.236	3.113	2.487
. 3593	.3417	1.442	1.245	3.568	2.810
.5185	.4830	1.741	1.480	3.630	2.854
. 5922	.5496	1.793	1.518	3.983	3.099
.8090	.7326	2.015	1.685	4.480	3.458
.9231	. 8295	2 .060	1.716	4.516	3.475

	Т	ABLE I	(Concluded)				Sod	ium <i>p-</i> Tolı	ienesulfona	ıte	
m_1	<i>m</i> 2	m_1	m2	m_1	7712	0.1520	0.1526	1.477	1.641	2,244	2.702
		Lithiur	n Nitrate			. 3030	.3071	1.497	1.679	2.290	2.791
0.1064	0.1053	1.211	1.084	2.731	2.276	. 3965	.4044	1.508	1.690	2.431	2.990
. 1545	.1515	1.265	1.131	2.809	2.335	.4729	. 4829	1.612	1.818	2.547	3.144
. 2 697	. 2627	1.430	1.260	2.893	2.397	. 6786	.6997	1.726	1.981	2.582	3.209
. 3816	. 3656	1.456	1.284	3.087	2.550	. 6992	. 7 24 3	1.779	2.057	2.702	3.400
. 4919	. 4655	1.577	1.385	3.130	2.577	. 8869	.9337	1.922	2.272	2.800	3.521
. 51 2 0	. 4846	1.591	1.392	3.257	2.673	1.078	1.154	2.025	2.428	3.201	4.106
. 6345	. 5925	1.647	1.440	3.415	2.791	1.079	1.157	2.066	2.477	3.229	4.152
.7695	. 7093	1.977	1,701	3.524	2.870	1.324	1.454	2.215	2.677	3.344	4.299
. 9991	. 9070	1.989	1.712	4.095	3.279	1.427	1.577	2,229	2.688		
1.082	.9780	2.287	1.933	4.228	3.378		D-4	-1 t. TT-	1		
1.109	1.003	2.378	2.009	4.616	3.658		Potas	sium p -10	luenesullor	late	
1.111	1.003	2.665	2.230	4.81	8.8 05	0.1540	0.1547	0.4941	0.5186	1.056	1.231
		2.712	2.264			. 1722	. 1737	. 4978	.5230	1.218	1.473
		G 11				.2487	.2533	.5732	.6077	1.401	1.757
		Sodiun	n Nitrate			.2695	.2752	,6124	. 6536	1.624	2.128
0.1040	0.1052	1.419	1.529	3.257	3. 84 0	. 4099	. 4253	.6 24 0	.6671	1.879	2.598
. 2 036	.2059	1.456	1.569	3.272	3.863	. 424 1	. 4396	. 64 76	. 6971	1.942	2.716
.2052	. 2077	1.543	1.674	3.391	4.038	. 446 5	. 4 637	.7125	.7757	2.102	3.028
.3365	. 3431	1.6 4 7	1.798	3. 43 4	4.087	.4572	.4765	.8044	.8851	2.375	3.579
. 4307	. 4428	1.687	1.845	3.585	4.315	.4771	.4969	.8754	. 9779	2.516	3.870
. 5090	. 5236	1.868	2.060	8.698	4.467			.9170	1.032		
.5732	. 59 35	2.304	2.596	3.888	4.735						
7063	. 7357	2.418	2.738	4.076	5.000	lar neu	ıtralizatio	n of the	correspo	onding c	arbon-
. 8404	.8774	2.482	2.814	4.095	5.016	ates an	id were a	lso recry	stallized.	All m	easure-
. 8724	.9159	2.560	2.912	4.134	5.072	ments	were made	∍at 25°́	For the	data for	potas-
1.109	1.175	2.595	2.956	4.228	5.194	nium A		alforato	T'am in	dabted i	o Mr
1.111	1.181	2.731	3.127	4.431	5.505	sium p	-tonuenes		I am m	aebteu	.0 1911.
1.132	1.205	2.734	3.138	4.516	5.628	D. A.	Sinclair,	M.Sc.º			
1.211	1.293	2.809	3.237	4.542	5.671	71 The activity coefficients calculated from these					
1. 2 35	1.317	3.000	3.506	4 .616	5.759	$^{.759}$ results are given in Table II and the plot of log γ					
1.342	1.441	3.130	3.672	4.81	6.025	⁰²⁵ against the square root of the concentration is					
		3.167	3.719			illerates	tod in Fig	1	or the et	J11001201 W	
		Potassiu	m Nitrate			mustra	teu in Fig	. 1.			
0 0000	0 1023	0 8079	0 9513	1 477	1 993			Discus	ssion		
1454	1504	8380	0.0016	1 538	2 197	ጥክል	a otivity (oofficient	e of the	alkali n	itrotos
2031	2126	8794	1 030	1 543	2 127	1 110	activity				1111
2158	2264	1 023	1 251	1 501	2 100	$\frac{1}{2}$ may be compared with those given in Landolt				ndolt-	
9467	2617	1 028	1 267	1 620	2 284	Börnstein's "Tabellen" for 25° corrected from				l from	
2585	2747	1 055	1 208	1 687	2 387	the freezing point data and also with the activity				ctivity	
2661	2831	1 061	1.318	1 759	2 542	coefficients obtained by Scatchard and Prentis				rentiss	
3350	3620	1 1001	1 387	1 868	2 769	corrected to 25° in a similar manner. Over the				the	
3594	3812	1 132	1 423	1 000	2 011	corrected to 25 in a similar manner. Over the				er ule	
4259	.0012	1 911	1 520	1.990 9.066	3 100	range where the data are comparable these ac				ese ac-	
4079	5522	1.211	1 619	9 09/	2 9/9	tivity coefficients are recorded in Table III.					Ι.
5500	, 0000	1.200	1.012	2.00±	0.4±0 9.900	Ther	e is disag	reement a	as to the	initial v	alue to
8149	7222	1.011	1 902	0 100	2 460	he assi	orned to t	he activi	ty coeffic	vient at	0.1 M
6726	. 7558	1 420	1.093	2.100	0.409 9 579	0000000	bustion bu	+ if this	in obviot	ad her ma	forming
.0730	. 7099	1.450	1.917	2.241	0.010	concent	tration bu		is obviat	ea by re	terring
.7040	. 8800	1.400	1.904	2.304	3.740	all acti	vity coeff	icients to	o the san	ne stand	ard at
	Lith	ium <i>p-</i> Te	oluenesulfona	te		0.1 M	concentra	ation, th	e agreen	ient at	higher
0.1052	0.1050	1.240	1.237	2.107	2 .155	concent	trations is	s very sa	tisfactory	7.	
. 2083	. 2079	1.389	1.383	2 .618	2.676	Ther	e are no	other de	terminat	ions on	the n-
. 2844	. 2823	1.420	1.419	2.887	2.972	toluono	enilfonator	to en	dor a co	morian	n nor
. 3340	.3323	1.463	1.471	3.355	3.427		m		uer a co	mpariso.	n pos-
. 4944	. 4885	1.543	1.547	3.451	3.524	sible.	1 wo pec	uliarities	are ap	parent :	in the
. 5550	. 5500	1.630	1.639	3.839	3.899	curves	for these	salts: in	the first	place th	e large
.7120	. 7056	1.687	1.707	4.483	4.513	dispersi	io n betwe	en the t	hree nitr	ates is 1	iot re-
.7217	.7174	1.858	1.894	4.810	4.819	(6) The	eis Tinivansis	v of New 7-	aland 1022		
1.132	1.123	1.950	1.988	4.810	4.822	(7) Fift	th edition, Zw	eiter Ergänz	ungsband, 1	931, p. 1112	•
							-	-			

f

	ACTIV	ATY COEFFIC	LIENTS OF A	lkali Acet	ATES, NITR.	ATBS AND Ø	-Toluenesu	LFONATES	
m	LiC ₂ H ₂ O ₂	$NaC_2H_3O_2$	KC ₂ H ₃ O ₂	LiNO:	NaNO3	KNO3	LiC7H7SO	NaC7H7SO3	KC7H7SO
0.1	0.779	0.788	0.793	0.785	0.755	0.730	0.770	0.761	0.757
. 2	.737	.752	.764	.748	. 699	. 656	.726	.705	. 698
.3	.715	. 738	.749	.734	. 661	. 605	. 695	. 669	. 659
. 5	. 695	. 735	.748	.725	. 613	. 540	. 661	. 622	. 605
.7	. 688	.738	.752	.728	. 581	. 492	. 639	. 590	. 560
1.0	. 687	.754	.776	.743	.546	. 439	. 619	.549	. 507
1.5	. 706	. 796	.836	.780	. 507	. 376	. 593	. 500	. 436
2.0	. 731	.851	.906	. 837	.479	. 326	. 572	. 458	. 3 8 5
2.5	. 766	. 916	. 989	. 899	.455	. 292	. 563	.426	.348
3.0	. 804	. 989	1.082	.969	. 436	. 265	. 561	.401	.317
3.5	. 844	1.066	1.182	1.048	. 421	. 24 3	. 564	. 383	. 293
4.0	. 889				.408		. 571	. 367	
4.5		• •	• •	• •	. 396		.582	• •	
5.0					.386		• •		
5.5			• •		. 378	••	••		
6.0	••	• •		••	.372				

TABLE II

produced in the toluenesulfonates in spite of the similarity of the two curves for the potassium

salts. Second, the curves of log γ against \sqrt{m} for sodium and potassium p-toluenesulfonates exhibit a slight but definite concavity toward the concentration axis in the region of 0.7 M. This has not been found with any other salt and does not occur with lithium toluenesulfonate although the curve for the latter salt is much flatter between 0.3 and 2 Mthan the curves for other salts of comparable activity coefficients.

The three alkali acetates exhibit a very small dispersion between the three salts. A direct comparison with the results of Scatchard and Prentiss is not possible in the absence of data for the partial molal heat contents and specific heats but from the equation

$$\frac{2RT^2}{25} \left\{ \log \gamma_m^{25} / \gamma_m^0 - \log \gamma_{0.1}^{25} / \gamma_{0.1}^0 \right\} = -(\overline{L}_m - \overline{L}_{0.1})$$

where γ^0 , γ^{25} are the activity coefficients at 0 and 25°, respectively, for the concentrations 0.1 M and m, an approximate value can be obtained for the relative partial molal heat of 0 to 25°. In the absence of specific X, limiting Debye-Hückel slope. heat data further comparison is not possible.

approximate, nevertheless give reasonably smooth curves except in the case of the sodium salt.

Fig. 1.—Activity coefficients of alkali salts: I, LiNO3; II, NaNO3; dilution $(\overline{L}_m - \overline{L}_{0.1})$ of the solute III, KNQ₃; IV, Li acetate; V, Na acetate; VI, K acetate; VII, Li paveraged over the temperature range toluenesulfonate; VIII, Na ϕ -toluenesulfonate; IX, K ϕ -toluenesulfonate;

While it is dangerous to generalize from such These values, which can only be regarded as scanty data, there are indications that the heat of

	1 ABL	E III	
Comparison	of Activity	COEFFICIEN	rs of Alkali
	NITE	ATES	
F = f. pt.	data in Land	olt–Börnstein.	S = data of
Scatchard and	Prentiss. R	= present rest	ults.
***	F	S	R
	LiN	NO3	
0.1	0.794	0.800	0.785
.2	.753	. 763	.748
.3	.736	.748	.734
	Nal	NO ₈	
0.1	0.754	0.770	0.755
.2	.704	.712	.699
.3		.680	.661
.5	. 624	.634	. 613
.7		. 598	. 581
1.0	. 553	. 555	. 546
	KN	103	
0.1	0.724	0.730	0,730
.2	. 653	.658	. 656
.3		. 609	. 605
.4	. 543	. 544	. 540
. 5		. 497	. 492
.6	. 449	. 443	. 439
	Tabl	E IV	
Average Moi	LAL HEAT OF D	ILUTION OF A	lkali Acetate

SOLUTIONS, IN CAL. PER MOLE OF SALT 0.20.3 0.507 1.0 m LiC₂H₃O₂ 116 221364 505 744 $NaC_2H_3O_2$ 12515592 120 134 185 48 334 424 $KC_2H_3O_2$ 149

dilution decreases in the order Li > K > Na, resembling in this respect the alkali hydroxides.

The osmotic coefficients of these nine salts at 1 M concentration are as follows

	Li	Na	K
NO ₃	0.977	← 0.836	← 0.744
C7H7SO8	. 889	← .833	← .786
$C_2H_3O_2$.944		> .995

I wish to tender my thanks to Dr. H. S. Harned for his encouragement and his advice in the compilation of this and the preceding paper.

Summary

1. Measurements of the concentrations of aqueous solutions of alkali nitrates, acetates and p-toluenesulfonates isopiestic with solutions of known strength of potassium chloride at 25° have been made.

2. From these the activity coefficients of the salts have been computed. The values of this quantity derived from these measurements agree with the activity coefficients computed from freezing point measurements in the case of the nitrates. In the case of solutions of the other salts, direct comparison with freezing point data could not be made. However, from the freezing point data and the vapor pressure data at 25°, the relative partial molal heat content of the acetates has been estimated.

Auckland, New Zealand Received March 21, 1935

[CONTRIBUTION FROM THE DEPARTMENT OF COLLOID SCIENCE, THE UNIVERSITY]

The Primary Decomposition of Hydrocarbon Vapors on Carbon Filaments

BY LEONARD BELCHETZ¹ AND ERIC K. RIDEAL

It is now certain that radicals are involved in the cracking as well as in the combustion of hydrocarbon vapors, but the nature of those produced in the primary decomposition cannot be regarded as firmly established. Neither is it known whether the products vary when the decomposition is effected at different hot catalytic surfaces. This communication deals with the decomposition of methane and ethane on carbon filaments.

In a preliminary note² experimental evidence was advanced in support of the views that of the two most probable reactions in the decomposition of methane at a hot platinum surface

(1) Emmanuel College External Research Scholar and H. B. Webb Gift Research Scholar (South Africa).

(a)
$$CH_4 + M \longrightarrow CH_3 + H + M$$

(b) $CH_4 + M \longrightarrow CH_2 + H_2 + M$

the second reaction occurs exclusively.³

In the case of ethane, it is generally considered that ethylene and hydrogen are primary products. Rice,⁴ however, has suggested that **a** break of a C-C bond first occurs with the production of methyl radicals, which are able to initiate chains.

The very careful work of Travers and Hockin⁵

(3) From the theoretical considerations of Lennard-Jones [*ibid.*, **30**, 70 (1934)] Mullikan [J. Chem. Phys., **1**, 500 (1933)] and Van Vleck [*ibid.*, **2**, 20 (1934)], this also appears to be the case for the homogeneous decomposition. For an alternative view, see Rice [*Trans. Faraday Soc.*, **30**, 152 (1934)] and Rice and Dooley [*THIS* JOURNAL, **56**, 2747 (1934)].

(4) Rice, This Journal, 53, 1959 (1931); 55, 3035 (1933).

(5) Travers and Hockin, Proc. Roy. Soc. (London), A126, 1 (1932).

⁽²⁾ Leonard Belchetz, Trans. Faraday Soc., 30, 170 (1934).